MIP*=RE implies that C_{qa} (the closure of the set of tensor product correlations) and C_{qc} (the set of commuting correlations) can be separated by a hyperplane (i.e., a Bell-like inequality) and that there are correlations produced by commuting measurements (a finite number of them and with a finite number of outcomes) on an infinite-dimensional quantum system which cannot be approximated by sequences of finite-dimensional tensor product correlations. We point out that there are four logically possible universes after this result. Each possibility is interesting because it reveals either limitations in accepted physical theories or opportunities to test crucial aspects of nature. We list some open problems that may help us to design a road map to learn in which of these universes we are.
MIP*=RE implies that C_{qa} (the closure of the set of tensor product correlations) and C_{qc} (the set of commuting correlations) can be separated by a hyperplane (i.e., a Bell-like inequality) and that there are correlations produced by commuting measurements (a finite number of them and with a finite number of outcomes) on an infinite-dimensional quantum system which cannot be approximated by sequences of finite-dimensional tensor product correlations. We point out that there are four logically possible universes after this result. Each possibility is interesting because it reveals either limitations in accepted physical theories or opportunities to test crucial aspects of nature. We list some open problems that may help us to design a road map to learn in which of these universes we are.