StoqMA characterizes the computational hardness of stoquastic local Hamiltonians, which is a family of Hamiltonians that does not suffer from the sign problem. Although error reduction is commonplace for many complexity classes, such as BPP, BQP, MA, QMA, etc.,this property remains open for StoqMA since Bravyi, Bessen and Terhal defined this class in 2006. In this note, we show that error reduction forStoqMA will imply that StoqMA = MA.
StoqMA characterizes the computational hardness of stoquastic local Hamiltonians, which is a family of Hamiltonians that does not suffer from the sign problem. Although error reduction is commonplace for many complexity classes, such as BPP, BQP, MA, QMA, etc.,this property remains open for StoqMA since Bravyi, Bessen and Terhal defined this class in 2006. In this note, we show that error reduction forStoqMA will imply that StoqMA = MA.